Desarrollo de un sistema inteligente web basado en redes neuronales artificiales para la predicción del riesgo de mortalidad del COVID-19

Cargando...
Miniatura

Fecha

2023

Título de la revista

ISSN de la revista

Título del volumen

Editor

Universidad Católica Santo Toribio de Mogrovejo

Resumen

El presente trabajo de investigación surge ante el problema mundial de la pandemia del COVID-19, de tal manera, esta investigación tiene como objetivo general el implementar una solución basada en redes neuronales artificiales para predecir el riesgo de mortalidad de la COVID-19 en pacientes infectados, utilizando datos de una clínica de la ciudad de Chiclayo. Así, se decidió utilizar la metodología Scrum para la gestión del proyecto de investigación y para el modelado de la red neuronal artificial (RNA) se siguió la metodología de desarrollo utilizada en la investigación de I. Kaastra y M. Boyd incluyendo ciertas mejoras de la metodología utilizada en la investigación de Abdulaal A et al. En consecuencia, este proyecto generó una herramienta médica la cual es accesible a través de cualquier navegador web y cuenta con dos RNA implementadas las cuales tienen la capacidad de aprender de nuevos registros clínicos ingresados. La mejor RNA implementada tiene una exactitud del 82.72%, AUROC de 88.48%, desviación estándar de 0.0848 y un F1Score de 83.72%; además, este sistema web fue validado para el diagnóstico con las siguientes métricas médicas: 85.71% de sensibilidad. 79.48% de especificidad y un AUROC del 88.48%. Así pues, del desarrollo de esta herramienta se concluye que para identificar la correcta arquitectura e hiperparámetros se deben generar diferentes iteraciones de entrenamiento de la RNA; asimismo, en cada iteración se debe utilizar diferentes combinaciones de arquitectura e hiperparámetros calculando las métricas de exactitud, F-measure, AUROC y desviación estándar. Finalmente, se podrá elegir a la combinación con las mejores métricas.

Descripción

Palabras clave

Redes neuronales artificiales, Infecciones por coronavirus, Inteligencia artificial, Aprendizaje automático

Citación

S. A. Mondragon, “Desarrollo de un sistema inteligente web basado en redes neuronales artificiales para la predicción del riesgo de mortalidad del COVID-19,” Ingeniero, Facultad de Ingeniería, Universidad Católica Santo Toribio de Mogrovejo, Chiclayo, Perú, 2023. [En línea]. Disponible en: