Sistema experto para ayudar a la detección de las enfermedades cardiovasculares más comunes en la provincia de Ferreñafe
Cargando...
Fecha
2025
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Católica Santo Toribio de Mogrovejo
Resumen
Este trabajo se centra en el desarrollo de un sistema experto diseñado para asistir en la detección de enfermedades cardiovasculares mediante el análisis de electrocardiogramas. Utilizando la metodología de ingeniería del conocimiento de John Durkin, se establecieron varios objetivos específicos: determinar la arquitectura tecnológica adecuada que soporte de manera efectiva el sistema, definir un algoritmo óptimo para el reconocimiento de patrones en los electrocardiogramas y validar la eficiencia del sistema. Los resultados obtenidos de cada uno de estos objetivos específicos demostraron que la arquitectura seleccionada proporciona la estabilidad y escalabilidad necesarias para el funcionamiento del sistema en un entorno real. Además, el algoritmo desarrollado para el reconocimiento de patrones mostró una alta precisión de 93.75% en la identificación de indicadores potenciales de enfermedades cardiovasculares, lo cual fue corroborado por la validación a través del cuestionario TAM, que confirmó la eficacia y la aceptación del sistema entre los usuarios finales con un 4.6%. Estos hallazgos destacan la viabilidad del sistema experto como una herramienta valiosa en el ámbito de la salud cardiovascular.
This work focuses on the development of an expert system designed to assist in the detection of cardiovascular diseases through the analysis of electrocardiograms. Using John Durkin's knowledge engineering methodology, several specific objectives were established: to determine the appropriate technological architecture that effectively supports the system, to define an optimal algorithm for pattern recognition in electrocardiograms, and to validate the efficiency of the system. The results obtained from each of these specific objectives demonstrated that the selected architecture provides the stability and scalability necessary for system operation in a real environment. In addition, the algorithm developed for pattern recognition showed high accuracy of 93.75% in identifying potential indicators of cardiovascular disease, which was corroborated by validation through the TAM questionnaire, which confirmed the efficiency and acceptance of the system among end users with 4.6%. These findings highlight the viability of the expert system as a valuable tool in the field of cardiovascular health.
This work focuses on the development of an expert system designed to assist in the detection of cardiovascular diseases through the analysis of electrocardiograms. Using John Durkin's knowledge engineering methodology, several specific objectives were established: to determine the appropriate technological architecture that effectively supports the system, to define an optimal algorithm for pattern recognition in electrocardiograms, and to validate the efficiency of the system. The results obtained from each of these specific objectives demonstrated that the selected architecture provides the stability and scalability necessary for system operation in a real environment. In addition, the algorithm developed for pattern recognition showed high accuracy of 93.75% in identifying potential indicators of cardiovascular disease, which was corroborated by validation through the TAM questionnaire, which confirmed the efficiency and acceptance of the system among end users with 4.6%. These findings highlight the viability of the expert system as a valuable tool in the field of cardiovascular health.
Descripción
Palabras clave
Sistema experto, Cardiovascular, Electrocardiograma, Expert system, MEDICINE::Dermatology and venerology,clinical genetics, internal medicine::Internal medicine::Cardiovascular medicine, Electrocardiogram
Citación
A. J. Villalobos, “Sistema experto para ayudar a la detección de las enfermedades cardiovasculares más comunes en la provincia de Ferreñafe,” tesis de licenciatura, Fac. de Ingeniería, Univ. USAT, Chiclayo, Perú, 2025. [En línea]. Disponible en: https://hdl.handle.net/20.500.12423/9744
