Evaluación de las propiedades mecánicas y físicas de una mezcla asfáltica adicionándole fibra de bambú en 1%, 2% y 3% para el uso de pavimentos flexibles
Cargando...
Fecha
2025
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Católica Santo Toribio de Mogrovejo
Resumen
Este estudio tuvo como objetivo evaluar las características físicas y mecánicas del asfalto con adicionamiento de hileras de bambú como material natural que puede brindar resistencia a la mezcla. Las hileras de caña actúan como una red que proporciona resistencia a tensiones provocadas por cargas específicas o cíclicas. Es obligatorio el uso de áridos procedentes de asfalto PEN 60/70 y de cantera de 3 tomas, probados según los procedimientos y especificaciones del MTC. Comparando los resultados obtenidos, el asfalto adicionado con hileras de caña tiene una fluidez ligeramente reducida (8,20 mm) en comparación con el asfalto tradicional (8,51 mm). Por consiguiente, se pudo ver que el equilibrio del asfalto tradicional fue de 3390 kg, mientras que el asfalto adicionado adecuado que contenía 1% de hilera de caña fue de 3407,67 kg. Es decir, el hormigón asfáltico adicionado puede resistir el desplazamiento y la deformación bajo cargas de tráfico moderado. Además, se determinó otras propiedades como la adhesividad de los materiales donde la mezcla asfáltica optima fue la de 1% con 11.66% de desgaste con respecto a la convencional que fue de 14.37 % de desgaste, es decir la mezcla con fibra tuvo menos porcentaje de desgaste y por consiguiente mayor resistencia, igualmente pasó cuando vimos la propiedad de resistencia al envejecimiento donde la mezcla con adición de 1% fue la óptima con 13.85 % de degaste con respecto a la convencional que fue de 16.68 % de desgaste, es decir la mezcla con fibra tuvo menos porcentaje de desgaste y por consiguiente mayor resistencia, lo mismo pasó cuando vimos la propiedad de resistencia a la temperatura donde la mezcla con dosificación de 1% fue la óptima con 13.42 % de desgaste con respecto a la tradicional que fue de 15.48% de desgaste, es decir la mezcla con fibra tuvo menos porcentaje de desgaste y por consiguiente mayor resistencia. Otra propiedad que se vio también fue la de resistencia al agrietamiento por flexión donde la mezcla con adición de 1% fue la óptima con 0.57 KJ/m2 de resistencia con respecto a la convencional que fue 0.53 KJ/m2 de resistencia, es decir la mezcla con fibra tuvo más resistencia al agrietamiento y por último se vio la propiedad de índice de rugosidad que es el acabado del pavimento donde la mezcla con adición de 3% fue la óptima con 1.94 mm de macrotextura con respecto a la mezcla convencional que tuvo 0.93 mm de macrotextura, es decir la mezcla con fibra tuvo mejor macrotextura y por consiguiente una mejor adherencia entre el vehículo y el pavimento. Entonces, el adicionamiento de fibras de bambú en el asfalto tradicional mejora significativamente sus propiedades físicas y mecánicas, reduciendo así las frecuentes fallas de los pavimentos flexibles provocadas por los efectos del clima y el transporte de carga pesada. Para finalizar se vio el lado económico donde la mezcla convencional resulta más económica en el diseño inicial, pero si comparamos a largo plazo resultaría beneficioso optar por la mezcla con adición ya que evitarías gastos en mantenimiento de carreteras debido a la alta capacidad que tiene este pavimento modificado para resistir cargas y deformaciones, además de contribuir al medio ambiente con la utilización de este material ecológico.
This study aimed to evaluate the physical and mechanical characteristics of asphalt with the addition of bamboo rows as a natural material that can provide strength to the mixture. The rows of cane act as a network that provides resistance to stresses caused by specific or cyclic loads. The use of aggregates from PEN 60/70 asphalt and from a 3-shot quarry is mandatory, tested according to the procedures and specifications of the MTC. Comparing the results obtained, the asphalt added with cane rows has a slightly reduced fluidity (8.20 mm) compared to traditional asphalt (8.51 mm). Therefore, it could be seen that the balance of the traditional asphalt was 3390 kg, while the appropriate added asphalt containing 1% of cane rows was 3407.67 kg. That is, the added asphalt concrete can resist displacement and deformation under moderate traffic loads. In addition, other properties were determined such as the adhesiveness of the materials where the optimal asphalt mixture was 1% with 11.66% wear with respect to the conventional one which was 14.37% wear, that is, the mixture with fiber had a lower percentage of wear and therefore greater resistance, the same happened when we saw the property of resistance to aging where the mixture with the addition of 1% was optimal with 13.85% wear with respect to the conventional one which was 16.68% wear, that is, the mixture with fiber had a lower percentage of wear and therefore greater resistance, the same happened when we saw the property of resistance to temperature where the mixture with 1% dosage was optimal with 13.42% wear with respect to the traditional one which was 15.48% wear, that is, the mixture with fiber had a lower percentage of wear and therefore greater resistance. Another property that was also seen was the resistance to flexural cracking where the mixture with the addition of 1% was optimal with 0.57 KJ/m2 of resistance with respect to the conventional one which was 0.53 KJ/m2 of resistance, that is, the mixture with fiber had more resistance to cracking and finally the roughness index property was seen, which is the pavement finish where the mixture with the addition of 3% was optimal with 1.94 mm of macrotexture with respect to the conventional mixture which had 0.93 mm of macrotexture, that is, the mixture with fiber had better macrotexture and therefore better adherence between the vehicle and the pavement. Thus, the addition of bamboo fibers to traditional asphalt significantly improves its physical and mechanical properties, thus reducing the frequent failures of flexible pavements caused by the effects of the weather and the transport of heavy loads. Finally, the economic side was seen where the conventional mix is more economical in the initial design, but if we compare in the long term it would be beneficial to opt for the mix with addition since it would avoid expenses in road maintenance due to the high capacity of this modified pavement to resist loads and deformations, in addition to contributing to the environment with the use of this ecological material.
This study aimed to evaluate the physical and mechanical characteristics of asphalt with the addition of bamboo rows as a natural material that can provide strength to the mixture. The rows of cane act as a network that provides resistance to stresses caused by specific or cyclic loads. The use of aggregates from PEN 60/70 asphalt and from a 3-shot quarry is mandatory, tested according to the procedures and specifications of the MTC. Comparing the results obtained, the asphalt added with cane rows has a slightly reduced fluidity (8.20 mm) compared to traditional asphalt (8.51 mm). Therefore, it could be seen that the balance of the traditional asphalt was 3390 kg, while the appropriate added asphalt containing 1% of cane rows was 3407.67 kg. That is, the added asphalt concrete can resist displacement and deformation under moderate traffic loads. In addition, other properties were determined such as the adhesiveness of the materials where the optimal asphalt mixture was 1% with 11.66% wear with respect to the conventional one which was 14.37% wear, that is, the mixture with fiber had a lower percentage of wear and therefore greater resistance, the same happened when we saw the property of resistance to aging where the mixture with the addition of 1% was optimal with 13.85% wear with respect to the conventional one which was 16.68% wear, that is, the mixture with fiber had a lower percentage of wear and therefore greater resistance, the same happened when we saw the property of resistance to temperature where the mixture with 1% dosage was optimal with 13.42% wear with respect to the traditional one which was 15.48% wear, that is, the mixture with fiber had a lower percentage of wear and therefore greater resistance. Another property that was also seen was the resistance to flexural cracking where the mixture with the addition of 1% was optimal with 0.57 KJ/m2 of resistance with respect to the conventional one which was 0.53 KJ/m2 of resistance, that is, the mixture with fiber had more resistance to cracking and finally the roughness index property was seen, which is the pavement finish where the mixture with the addition of 3% was optimal with 1.94 mm of macrotexture with respect to the conventional mixture which had 0.93 mm of macrotexture, that is, the mixture with fiber had better macrotexture and therefore better adherence between the vehicle and the pavement. Thus, the addition of bamboo fibers to traditional asphalt significantly improves its physical and mechanical properties, thus reducing the frequent failures of flexible pavements caused by the effects of the weather and the transport of heavy loads. Finally, the economic side was seen where the conventional mix is more economical in the initial design, but if we compare in the long term it would be beneficial to opt for the mix with addition since it would avoid expenses in road maintenance due to the high capacity of this modified pavement to resist loads and deformations, in addition to contributing to the environment with the use of this ecological material.
Descripción
Palabras clave
Asfalto, Bambú, Fibras naturales, Asphalt, Bamboo, Natural fibers
Citación
E. Torres Mera,. "Evaluación de las propiedades mecánicas y físicas de una mezcla asfáltica adicionándole fibra de bambú en 1%, 2% y 3% para el uso de pavimentos flexibles," tesis de licenciatura, Fac. de Ingeniería, Univ. USAT, Chiclayo, Perú, 2025. [En línea]. Disponible en:
